A normal distribution is the continuous probability distribution with a probability density function that gives you a symmetrical bell curve. Simply put, it is a plot of the probability function of a variable that has maximum data concentrated around one point and a few points taper off symmetrically towards two opposite ends.
The normal distribution model always describes a symmetric, unimodal, bell shaped curve. However, these curves can look different depending on the details of the model. Specifically, the normal distribution model can be adjusted using two parameters: mean and standard deviation.
Normal distributions are symmetric around their mean. The mean, median, and mode of a normal distribution are equal. The area under the normal curve is equal to 1.0 1.0. Normal distributions are denser in the center and less dense in the tails. Normal distributions are defined by two parameters, the mean (μ μ) and the standard deviation (σ σ ).
Normal distributions can differ in their means and in their standard deviations. Figure 4.5.1 4.5. 1 shows three normal distributions. The green (left-most) distribution has a mean of -3 and a standard deviation of 0.5, the distribution in red (the middle distribution) has a mean of 0 and a standard deviation of 1, and the distribution in black
The normal distributions are closely associated with many things such as: Marks scored on the test Heights of different persons Size of objects produced by the machine Blood pressure and so on.
Normal distributions come up time and time again in statistics. A normal distribution has some interesting properties: it has a bell shape, the mean and median are equal, and 68% of the data falls within 1 standard deviation. What is a normal distribution?
EYyO. 498 481 498 164 98 128 74 352 183
what is normal distribution in statistics